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Abstract—The Internet of Things (IoT) enables connectivity be-
tween devices, thereby allowing them to interact with each other.
A recurring problem is the emergence of siloed IoT platforms
due to proprietary standards. Recently, the World Wide Web
Consortium (W3C) proposed a human-readable and machine-
understandable format called Thing Description (TD). It allows to
uniformly describe device and service interfaces of different IoT
standards with syntactic and semantic information, and hence
enables semantic interoperability. However, describing sequential
behavior of devices, which is essential for many cyber-physical
systems, is not covered. In this paper, we propose a systematic
way to describe such sequential behavior as an extension within
TDs, thereby increasing their semantic expressiveness through
possible, valid state transitions. This enables safe and desired
operation of devices as well as scalability by modeling systems
as sequential compositions of Things. We show in a case study
that previously unmodelable behavior can now be expressed and
the overall manual intervention requirements of state-of-the-art
implementations can be significantly reduced.

Index Terms—Internet of Things, Thing Description, CPS,
Model-driven development, System Testing

I. INTRODUCTION

The Internet of Things (IoT) brings connectivity to electronic
devices and allows them to connect with each other. Due to the
large variety of IoT devices and application scenarios, they all
bring their own properties such as different processing speed or
range of connectivity, desired run-time or energy consumption,
safety features etc. This creates a fragmentation in IoT, with
different standards to interact with the devices and to represent
them, each optimized for a specific application area or device
type. Consequently, such fragmentation hampers composing
applications beyond the functionality of the individual devices.

In the electronic design community, languages such as
SystemVerilog have proven to be an effective standardized
representation for the entire development cycle, from design
to verification and for a very wide range of application areas.
However, in the IoT domain, companies introduce siloed IoT
platforms that come with proprietary standards even within
similar application domains.

Consequently, there is a necessity that an IoT device can
be represented with a description of capabilities which can be
understood and interpreted by other devices and standards.
Here, a common ground can be created by enabling to
describe an interface to different standards in a well-defined
representation. For this purpose, the Thing Description (TD)
[1] was introduced recently as an open description format for
devices with connectivity of any kind which is human-readable
and machine-understandable. The TD is not a standard to
replace other IoT standards, but it enables to describe them
through syntactic and semantic information.
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Figure 1: An abstracted view of an IoT System with 3 IoT Devices each with
an associated Thing Description (TD). The arrows demonstrate composition
of greater functionality than the devices themselves, necessitating sequential
behavior between devices.

Consider a temperature sensor used with a cloud IoT platform
and a local ventilator. Between them, TDs enable to create a
temperature-controlled ventilation system directly composed of
the capabilities of these two physical devices. The advantage of
such interoperability for machine to machine communication is
to enable system functionality without prior knowledge about
the interfaces between the devices.

Such a sensor’s functional capability, data structure and
access points will be referenced in the TD of the sensor. Hence,
the ventilator will be able to access the sensor data due to the
provided access points and will be able to understand the data
due to the data structure described in the TD.

The previous ventilation system example is abstracted in
Fig. 1. This system has three IoT devices, each possessing a
TD. Within the system, each IoT device, to which we will in
the following refer to as a Thing2, can read the TD of another
Thing and interpret it to understand the information such as
the Thing’s interactions, supported protocols, data structure,
how to access the data etc., as described in the column on the
right of Fig. 1 (TD Contents). During the course of the paper,
an exposer Thing accepts requests provided in its TD, whereas
the consumer Thing reads a TD and interacts with the exposer
Thing.

An interaction is the description of a specific capability of
the Thing, representing the data structure, access protocol and
access link. For example, reading the temperature value is such
an interaction with the Thing. Similarly, rotating the fan is
also an interaction that acts on the physical world. In a TD,
one would find a list of interactions and how to access them.
Interactions are illustrated by numbered boxes in Fig. 1 and
they will be explained in Section II in more detail.

2When the word Thing is used with a capital letter, a Thing means, an object,
either virtual or physical, that can be communicated with.
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In Fig. 1, Thing A has three interactions and all these
interactions can be used by Thing B and C to interact with
Thing A. Referring to the temperature-controlled ventilation
system example, interaction 1 of Thing A can be reading the
temperature value and the interaction 4 of Thing B can be
rotating the fan.

Problem Statement. With the current TD standard, it is
possible to build the system described in Fig. 1. However,
the behavior represented by arrows has to be programmed
manually which results in an implicit description of the device
or system.

An interaction can change the state of the Thing, making it
accept only certain interactions (state transitions). For example,
the red (continuous) arrow is a sequence describing such state
transitions of Thing A. This can be requirements of sequential
behavior, such as initializing the motor driver of the ventilator
before setting a rotation speed. In order to execute this sequence
of interactions, since such a sequence is not described in the TD,
the person who implements the compositional system needs to
have access to an operation manual of Thing A. This manual
should describe the internal workings of the Thing (e.g. with
a state machine) and give meaning to the causality between
interactions.

Similarly, the green (dotted) and blue (dashed) arrows in
Fig. 1 illustrate sequential behavior between multiple Things
and are not expressed anywhere, thus need to be implemented
manually. For example, we would like to express that the
green (dotted) arrow represents the aforementioned temperature
control functionality in the correct order and with a causal
relation: reading a temperature value and then rotating the
ventilator. This shows that executing multiple interactions can
provide another meaning that is not previously given in a single
interaction. To solve this problem, a new interaction can be
implemented that provides the same meaning of executing
multiple interactions. This is possible during the development
phase of Things, but for non-reprogrammable, legacy devices
there is no such option.

Contributions. In order to avoid that each interaction is
executable at any given time or multiple interactions can be
executed in any given order, in this paper, we propose the
specification of sequential behavior within TDs. The ability to
represent valid sequences of interactions, which we call paths,
in the TD of a device enables the designer of this device
to restrict interactions and hence simplify the interaction of
other devices with this device. Without such paths, arbitrary
sequences of interactions could be triggered which would either
require knowledge about the inner workings of the device or
create an unsafe and erroneous behavior.

Consequently, in the context of TDs introduced in Section
II, this paper has the following contributions:

• We propose an additional vocabulary3 to describe sequen-
tial behavior in a Thing Description, called path in Section
III-A. This enables stronger semantics for describing how
to interact with Things.

• We show that a system can be composed through sequen-
tial interactions of multiple Things by using the same
path logic, presented in Section III-B.

• We demonstrate a case study with sequential behavior in
an industrial automation system composed of an industrial
fan, a temperature sensor and a system controller in
Section IV.

3The term vocabulary is used here since the TD standard [1] refers to actions,
properties etc. as a vocabulary.

Related work is discussed in Section V and Section VI
concludes.

II. THING DESCRIPTION

The Thing Description (TD) approach has been introduced
in September 2017 (First public draft) by the Web of Things
(WoT) Group of World Wide Web Consortium (W3C). This
section will explain the TD approach, but most importantly, its
shortcomings and why our contribution is necessary to enable
TDs to describe more complex, cyber-physical systems. In
the following, we will mainly focus on the relevant details
of TDs for the context of our contribution, the proposed path
vocabulary.

The path vocabulary that will be introduced in Section III,
describes a series of interactions. Further information on the
characteristics of interactions is thus required before introducing
this vocabulary. In this section, we will define interactions in
order to argument the need for describing sequential behavior.

An interaction I can represent two types of messaging
patterns: request-response (Def. II.1) and publish-subscribe
(Def. II.2).

Definition II.1. (Request-Response)
For a request p ∈ client and a q ∈ server, the pair is defined

as follows:
p⇒ q (1)

Definition II.2. (Publish-Subscribe)
Notifying an event only in matching subscription intervals

is defined by [2] as follows:

∀e ∈ nfy(x) ∈ hi ⇒ nfy(x) ∈ Si(C) s.t. C(x) = >, (2)

with
• e, the event the subscriber subscribed to;
• x, the information generated from the process;
• nfy, the notification of the information;
• h, a local computation that generated x;
• S, the interval between subscription and unsubscription;
• C, the subscription request by the subscriber;
• >, the pattern of the event to subscribe to at the server

side.

These formal definitions for interactions are mentioned in
the TD standard [1] in three groups:

• Properties: A value provided by the Thing, such as sensor
data, or values provided to the Thing, such as a desired
temperature. This matches the request-response pattern.

• Actions: Requesting the Thing to do something that
interacts with the physical world or with other Things that
also takes some time, such as turning on a fan or LED.
This matches the request-response pattern.

• Events: A message triggered due to a change in the Thing
and sent to the consumer Things which have subscribed
to it, such as an overflow alarm. This matches the publish-
subscribe pattern.

In order to illustrate the different types of interactions in
a practical example, we are showing a simplified TD of a
ventilator in Listing 1. This ventilation Thing, as described by
its TD, can rotate the motor of the ventilator at a given speed
provided by the consumer Thing. It also has safety features
such as requiring initialization by the consumer Thing. Also, in
case of an overheating of the motor, it can notify the consuming
Things who are subscribed to this notification.
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Figure 2: Request-Response sequence abstraction that can be used for
interacting with a Thing. The orange (dashed) arrow demonstrates the missing
part of the TDs which is the problem addressed in the paper.

Other than interactions, the TD provides identification
information. In the order of appearance in Listing 1, the name
provides a human readable reference (identification) for this
Thing, whereas id provides a unique identification that stays
unchanged through different networks or IP addresses. Similarly
the base (line 3) describes the protocol and the Uniform
Resource Identifier (URI) needed to communicate with this
Thing. Correspondingly, an interaction is always described with
its URI (access protocol and address), allowing the interaction
to be defined even if this URI is outside the TD.

By using the default protocol bindings described in [3], one
can interact with the previously introduced ventilator in the
following sequence:

• Read or write the rotation speed of the ventilator by
reading/writing the rotation property (lines 6-10).
Here, it is specified that the data structure should be
an integer.

• Rotate the ventilator by invoking the rotate action
(lines 13-15). This action can be invoked without sending
any specific data and the response will not contain an
integer as in the previous property.

• Initialize the motor driver by invoking the initialize
action (lines 16-19). Here, it is specified that the data
structure of the response should be a string.

• Subscribe to the overheating event (lines 22-25) and
get notified if the motor heats up too much. The structure
of the data received will be a string data structure.

This ventilation Thing represents a sequential behavior that
is not explicitly described. If one reads and learns the internal
workings of the Thing, it is specified that in order to rotate the
motor, one needs to invoke the initialize action (line 16-
19). This problem is commonly encountered in cyber-physical
systems and is illustrated in an abstracted fashion in Fig. 2.
Generally, a consumer Thing reads a TD, understands what
can be done with the associated Thing, sends a chosen request
to execute the interaction and waits for the response from the
Thing. The orange (dashed) arrow Choose Interaction
is thus handled implicitly by the Thing Y (consumer) and there
is no vocabulary that tells the consumer to execute interactions
in a specific order. Without the contribution of this paper, Thing
Y’s developer had to know the internal workings of Thing X.
With our contribution, presented in the following section, this
becomes a more systematic and guided process.

III. DESCRIBING SEQUENTIAL BEHAVIOR

The contribution of this paper is the new path vocabulary that
allows to describe sequential behavior. We start this section by
listing some requirements of such a vocabulary in the context
of TDs. The following subsections will start by introducing the
vocabulary for single devices and then extend it for systems
composed from devices.

1{
2 "name": "MyVentilator",
3 "id": "urn:wot:com:servient:ventilator",
4 "base":"coaps://vent.example.com:5683"
5 "properties":{
6 "rotation":{
7 "type": "integer",
8 "writable": true,
9 "forms":[{"href": "/rotation"}]

10 }
11 },
12 "actions":{
13 "rotate":{
14 "forms":[{"href": "/rotate"}]
15 },
16 "initialize":{
17 "output":{"type": "string"},
18 "forms":[{"href": "/init"}]
19 }
20 },
21 "events":{
22 "overheating":{
23 "type":"string",
24 "forms":[{"href": "/oh"}]
25 }
26 }
27 }
Listing 1: Simple Thing Description of a ventilator that exposes the rotation
speed, motor initialization and rotating actions and an overheat alarm.

Many models for system representation are measured by
their expressiveness. In the field of automata theory, there
are different levels of expressiveness, from finite automata to
Turing Machines.

For cheap and not powerful IoT devices, exhaustive modeling
of the inner workings is too tedious. On the other hand, a
behavior described in a TD needs to be parsed and understood
by such resource-constrained devices. Hence, even if the device
providing this representation has enough resources to provide it,
the description will not be usable by other IoT devices which
are resource-constrained. Furthermore, obliging interacting
devices to understand such behavior is contradictory to the
design philosophy that internet and web technology enabled
in the last decades, which is also applied for IoT.

Often, Web pages, services or Application Programming
Interfaces (APIs) are self descriptive and the user does not
need to understand the whole system to start using them. For
example, in a simple web page, the user can simply understand
the link that he/she is interested in and not look at the rest
(e.g. a site-map), i.e. not understand the whole state machine
to execute one interaction. Inspired by the success of this logic,
it is primordial to follow the same logic for IoT systems and
hence for TD, in order to enable easy adoptability and usability.

A. Describing Sequential Behavior in a Single Thing
The path vocabulary is based on describing sequential

behavior for a single Thing. For this reason, we will formally
define the path vocabulary in this section. The formal definition
will be then embedded into the TD format and later on used
in a system. In order to illustrate the problem and guide the
paper, we will be using a state machine of a legacy motor
driver of a ventilator, as shown in Fig. 3.

This device cannot be reprogrammed4, but requires strict
sequential behavior in order to operate safely. A sequence of

4TDs allow precise description of the capabilities of a device even if the device
cannot provide its own TD. In this case, we can use a gateway that stores
and provides the TD
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Figure 3: State machine representation of a legacy motor driver. In order
to enable setting the rotation speed to the desired value, Initialize, Rotate
interactions have to be executed in this order.

interactions is needed to make it ready for accepting speed
commands or to bring it back to a safe stop.

We can see that the initialize action needs to be
invoked to initialize the motor. This sets the rotation per minute
(rpm) of the motor to 0. However, as a safety feature, the
rotate action must to be explicitly invoked before setting
the rotation speed with the rotation property. At this point,
we can write to the speed value and rotate the motor in a
direction. E.g., to rotate the motor at 1300 rpm, the following
specific order of interactions is needed:

1) Initialize
2) Rotate
3) Write (1300 rpm as value)
A consumer Thing that will interact with this motor driver

and that does not know this sequential behavior, cannot control
the machine the way it is designed. Furthermore, if the
consumer Thing has access to this specific state machine in a
machine readable format (such as SCXML [4]), understanding
the entire state machine for every application should not be
necessary. For example, if the motor driver, i.e. the exposer
Thing, chooses to expose only a safe stop sequence, the entire
state machine that also describes the sequence to rotate the
motor would contain unnecessary information.

By contrast, in our path vocabulary, we describe the behavior
we want to describe with simple sequential interactions with
interaction data that already exist in the TD. The aforemen-
tioned path of interactions, named RotateMotor, is shown
in Fig. 4 along with the state machine from Fig. 3 that was
used to generate the paths. We have given other valid path
examples from the state machine for illustration.

In order to properly define the path vocabulary we need to
introduce four definitions this vocabulary is composed of: path,
name, @type and paths.

Definition III.1. (Path)
From an ordered sequence of interactions I of sequence

length l with 1 ≤ i ≤ l, a path π with name t is defined as:

πt = I1, ..., Ii, ..., Il (3)

Definition III.2. (Name)
The name of the path is used within the TD to reference the

JSON [5] object that contains the path information. Within the
TD, the name allows the path to be referenced in the following
fashion:

πt = derivePath(t), (4)

Initialize Rotate Write

Proposed Paths

Name: RotateMotor

Stop Sleep

Name: SafeStop

Reset Initialize Rotate Write

Name: ForceRotateMotor

Write

Name: Write

Figure 4: Illustration of Thing Description paths based on the state machine
of a legacy motor driver for an industrial fan. The paths are composed of
interactions that execute state transitions. Note that the path just contains a
single interaction, which is still a valid representation.

with derivePath being a function that finds the path t by
parsing the TD.

Definition III.3. (@type)
The @type optionally allows to annotate semantics with

the path. It uses the JSON-LD [6] format to reference to
another resource on the web that gives a meaning to the path,
making it machine-readable. In a TD, this semantic annotation
is given in a compacted form. The value written in @type
will be combined with a URI in the @context field of the
TD, exactly the same way as it is combined in the TD standard
[1]. Currently used semantic annotations can be found in the
iot.schema.org library5 and used for linking the data.

Definition III.4. (Paths)
The set of paths offered by the Thing is denoted by Π and

defined as follows:

Π =
⋃
πk | πk ∈ TD (5)

These formal definitions translate to a path description in a
TD6 as shown in Listing 2. It is an extension of the TD in List-
ing 1, with ... symbolizing the interactions of this TD. This
specific TD offers only two paths: rotateMotor to rotate
the motor from an initial state by executing initialize,
rotate and rotation, as well as safeStop which brings
the motor to the initial state by executing stop and sleep,
in these respective orders.

Dealing with Legacy Devices. TDs are envisioned for any
device that needs to be connected to an IoT system. As we
have mentioned before, the motor driver of the ventilator is
a legacy device. During the course of the paper, we have
used modern protocols such as CoAP [7] in the TD listings.
However, the advantage of TDs is the capability to also describe
older protocols such as Modbus [8], widely used in industrial
automation. Such devices might be also non-reprogrammable,
which means that they cannot provide a TD themselves. In
this case, the TD of such a device has to be retrieved from
a database. Thus, the TD of the ventilator has been retrieved
from a local database and used by a gateway.

5http://iot.schema.org/
6Path description can be also made using the id URN, but this is left out of
the scope of the paper.
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The use of a gateway is necessary to provide access to
the functionalities of the legacy device to devices that do not
have direct access to the legacy device, such as not supporting
the protocol of the legacy device or not having a physical
connection. Such a configuration is illustrated in Fig. 5 with
Thing C as the device that does not have direct access to
Thing A, the legacy device.

The gateway can then proceed on making the paths of the
legacy device simple to use for consumer Things, such as
Thing C. In the context of IoT, path descriptions should not
be imposed to consumer Things that are not part of the system.

We are expecting to see our path vocabulary to be used
inside the system and not in the TD of a device such as a
gateway. Hence, the TD of the gateway should present simple
interactions that should be executable without any causality.
In Fig. 5, the path RotateMotor becomes an interaction
with the same name that will be executed as a normal TD
interaction by Thing C.

1{
2 "name": "MyVentilator",
3 ...
4 "paths":{
5 "rotateMotor":{
6 "@type":"iot:rotate",
7 "path":[
8 "/initialize",
9 "/rotate",

10 "/rotation"
11 ]
12 },
13 "safeStop":{
14 "@type":"iot:stop",
15 "path":["/stop","/sleep"]
16 }
17 }
18 }

Listing 2: Thing Description of the motor driver with the paths that represent
the interaction sequences.

B. Composing a System
In the context of IoT, we are considering resource con-

strained devices that are not able to offer a lot of functionality
on their own. This is why composing a system by bringing
multiple devices together to orchestrate more functionalities is
highly relevant. Consider the system illustrated in Fig. 6, with
a Thing B that can measure room temperature and another
Thing A, which is a ventilator, to reduce room temperature.

Gateway

Thing A Thing C

Initialize

Rotate Rotation

RotateMotor

Thing B

Temperature

Control

Temperature

RotateMotor
... Control

SafeStop

...

1

2

Figure 6: A gateway can compose a system through the use of the path
vocabulary. Here, the system is a temperature control system with a temperature
sensor and an industrial ventilator. Things, such as Thing C, that do not have
physical access to the system components can execute simple Thing Description
interactions to interact with the system through the gateway.

We will illustrate the composition of a system by using the two
devices that can control the temperature of a room, bringing
additional functionality just by combining their abilities.

We will be using the same path vocabulary introduced in
the previous section for this system composition. The path
vocabulary is not limited to describe a single Thing, but can
be used for a system of Things and the causality between
interactions of multiple Things. By using the same vocabulary,
we will enable a scalable design approach.

The aforementioned temperature control system can be
described by simply using the URIs from different TDs to
describe a system level functionality in a path. Such a path
can be executed through a system controller or a Thing of the
system. Fig. 6 illustrates this system with a system controller
where the gateway device takes the responsibility of describing
the system behavior and executing system level functionalities.

The dashed orange arrows in Fig. 6 demonstrate a path
executed by the system controller. The system controller is
thus able to execute paths or interactions of other devices due
to its system controller TD.

Since a path for a single Thing contains interaction URIs,
a path and an interaction can be mixed into another path.
This is illustrated in Fig. 6 by the control path that has
the temperature interaction and the rotateMotor path
combined. This means that our path vocabulary can scale
well and create a compositional design flow for IoT systems.
Listing 3 shows the TD of the gateway illustrated in Fig. 6. The
path called control can either be offered as an interaction
to the consumers of the gateway or directly used, just as the
gateway is using the path of the ventilator. As a result, based on
thoroughly tested simple interactions and paths, more complex
behavior can be described and offered to higher level system
controllers.

Note that the URIs have to be absolute URIs in a system
controller, since relative URIs loose their uniqueness outside
the TD.7

IV. CASE STUDY: TESTING WITH PATH SEMANTICS

Ideally, a TD describes what a Thing can do, but it is up to the
developer of the Thing to properly implement the capabilities.

7A URI in a TD such as /initialize can be combined with the base URI
of the TD to create a URI that is valid also outside a TD. In this case, it
would be coaps://vent.example.com:5683/initialize.



1{
2 "id": "urn:wot:com:example:system:tempCont",
3 "name": "SystemController",
4 "@context": ["https://w3c...jsonld",
5 {"iot": "http://iot.schema.org/"}],
6 "paths":{
7 "control":{
8 "@type":"iot:temperatureControl",
9 "path":[

10 "http://fdlSensor.com:5683/temperature",
11 "coaps://vent.example.com:5683/initialize",
12 "coaps://vent.example.com:5683/rotate",
13 "coaps://vent.example.com:5683/rotation"
14 ]
15 }
16 }
17 }

Listing 3: Thing Description of a system controller/gateway of the temperature
control system with a path composed of URIs of interactions of system
components.

It is even more difficult to implement everything correctly
when designing and implementing a system because of the
interlinked behavior of devices that compose the system. During
both development processes for testing single Things as well
as for systems of Things, testing becomes helpful to detect
any errors in the implementation. However, manual testing is a
tedious process and for this reason, automatic testing methods
are widely used in many application domains.

In a case study, we will show how to apply TDs with the
new path vocabulary to facilitate automated testing. In order
to show the advantages of our contribution, we will compare
the test coverage of our new path-enabled approach to state-
of-the-art testing without paths through an example. Similar
to the previous section, we will first present this for a single
Thing and then for a system. In the end, an algorithm that
is applicable to test both single Things and systems will be
shown.

TDs, with or without the path vocabulary, describe exposer
Things that the consumer Things will interact with. Since a
TD is human readable, it can be used for specifying a Thing to
develop (product), read by the developers who are not familiar
with the internal workings of the device during implementation
and more importantly, since it is machine-understandable, it
can be used for automatic testing to generate test scenarios.

In the following, for automatic testing, we will use the
black-box testing approach. In black-box testing, inputs are
given to a device under test and the outputs are observed. This
type of interaction is equal to a consumer Thing interacting
with an exposer Thing. Since the consumer interacts with
the exposer based on the information obtained from its TD,
black-box testing of an exposer Thing implementation can be
automatized by using its TD.

A. Single Thing Testing

We will demonstrate testing a single device with the
ventilation Thing introduced earlier in Listing 1. The first
case will be without using paths to illustrate the state-of-the-art
approach and the second case will apply the path vocabulary.

Testing without paths. Before adding the path vocabulary,
one can automatically test a Thing by sending requests
described in its TD in a random order, called a test scenario.
Combined with the data structure represented in the TD, it is
possible to cover every interaction described in the TD of the
Thing under test.

Write Property

Verify Data
Structure

Verify Data
Structure

Compare with
Written Value

Read Property

Read Property

If writable

Invoke Action

Verify Data
Structure

Receive
Response

Subscribe to
Event

Wait for
Notification

Verify Data
Structure

Receive
Response

(a) (b) (c)

Figure 7: Architecture of the proposed testing methodology of any interaction
of a Thing with a given Thing Description. The yellow boxes (with a ?)
symbolize a test that can find either a faulty or correct behavior. The data
needed to invoke an action or write to a property is generated using data
generation tools.

We have developed the test architecture in Fig. 7 to test
each of the three interaction patterns introduced in Section II.
This architecture allows us to systematically test a Thing by
using its TD. We run the corresponding interaction pattern’s
test method (the vertically aligned boxes) for each interaction
in the test scenario as follows:

• Property (Fig. 7(a)): The property value is read and then
compared with the structure given in the TD. If the
property is writable, a value is generated according to the
described data structure and sent to the Thing. The same
property is read again to check whether the write request
has been successful.

• Action (Fig. 7(b)): If the action needs input data to execute,
the input data is generated and sent to the Thing to invoke
the action. Then the response value is compared with the
structure given in the TD.

• Event (Fig. 7(c)): First the event subscription is performed.
Once the event is triggered, the value is received and it
is compared to the structure given in the TD.

Fig. 8 shows an execution trace extract of a test scenario
that includes the test of the rotation property and the
rotate action. Here, the Thing under test has interactions
that require sequential execution to properly function, but
the testing was performed in random order as the sequence
could not be expressed in the TD without paths. This lack of
expressiveness makes the test results unreliable. As illustrated
in Fig. 8, invoking the rotate action and writing to the
rotation property does not change anything in the system
since the initialize action has not been invoked before.
This is shown as an error because the write operation was not
successful, but the real problem is in the order of interactions.
This is a problem found while testing, but the same problem
can occur when a consumer Thing (e.g. gateway) is trying to
interact with the exposer Thing.

Fig. 8 shows two problems originating from the lack of
expressiveness regarding sequential behavior:

• The Rotate action will probably not be used as it is
meant to. The only way to do it systematically would
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Figure 8: Illustration of a test path generated from the Thing Description of
the industrial ventilator that does not support the path vocabulary. The red
boxes (with an X) should symbolize a fault in the ventilator. However, these
are the correct responses if the sequential behavior is not respected. The lack
of expressiveness in the Thing Description causes this misinterpretation error.

be to read a document such as an operation manual and
manually write the test scenario.

• Errors in the implementation of the Rotate action will
never be detected in a systematic way. The Rotate action
will be used the way it is designed only if the random
order of interactions during testing matches the sequential
behavior.

Testing with paths. By using the path vocabulary, the
randomness of the order of requests can be mitigated. Test
scenarios can be generated in a systematic way instead of a
random way and thus the actual behavior of the system can
be tested. The testing method with vertically ordered boxes of
Fig. 7 for testing a single interaction stays the same and only
the ordering of the test scenario changes.

By using the path vocabulary, one can automatically generate
a test scenario that tests the described sequential behavior. This
is illustrated in Fig. 9 where the last test Get rotation
property is shown to have two outcomes. Normally, there
would be only one response. For demonstration purposes, we
have illustrated one faulty and one correct response. Compared
to the red results (with an X) in Fig. 8, this red result (with
an X) in Fig. 9 detects an actual error of the device. In the
case of the error outcome, we see a value smaller than the
intended one which can be because of the developer not
properly implementing the rotation function of the motor
driver. We can conclude that following the correct path allowed
us to systematically test the desired behavior of the write
functionality of the Thing.

There are two advantages of the added expressiveness for
testing single Things:

• Test scenarios test the actual behavior of the Thing and
show real faults of the Thing under test with respect to
its intended behavior.

• More features of the Thing can be tested since following
a path describes additional functionality compared to the
single interactions alone.

B. System Level Testing

In this use case, we will illustrate the testing of the
previously introduced temperature controlling system during
its development cycle.

Test Flow According to Test Scenario 
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Figure 9: Illustration of a test path generated from the Thing Description of the
industrial ventilator that supports the path vocabulary. Differently from Figure
8, the correct sequential behavior can be tested and real faults in the system
can be identified. The last test case is shown with two possible outcomes,
depending on whether the Thing has faults or not, which are both valid test
results.

As mentioned in Section III-B, it is possible to describe an
IoT system in a TD with the path vocabulary. For this specific
use case, our gateway/system controller device does not bring
any extra functionality and is used only for composing the
system. Thus, in its TD, there is no interaction but only paths.
It is still the same Thing as described by Listing 3.

All the URIs (lines 10-13) are absolute and they refer to
interactions of Things in the system. By following the path
named control (starting at line 7), the gateway can regulate
the temperature of the system. To do so, it gets the temperature
value from the temperature sensor, then initializes and rotates
the motor of the ventilator.

Note that URIs identify resources. Thus, a path does not
have a URI since it is not a resource on its own, but its contents
are interactions, which are well-defined URIs. For this reason,
when including a path in an higher level device, we will need
to parse the contents of the path, remove its name and create
a new list of paths. This can be seen in the TD of the system
controller in the control path where the RotateMotor
path has been decomposed into the URIs of its interactions
(lines 11-13).

The testing logic with TDs containing paths represented for
single Things can be applied here with a small modification.
The path URIs refer to the interaction, but the type of an
interaction (e.g. action) can only be found in the TD that
contains this interaction. Since the system controller has access
to the TDs of every device in the system (e.g. stored in its
memory), the interaction with a specific URI can be found by
searching through these TDs. Hence, the test path will still be
generated through the paths of the system controller, but the
interaction with the Things of the system will be performed
through their TDs. As the URIs are unique, there can be no
mismatch of interactions.

To generalize the testing approach in order to adapt to any
TD of a system, and thus to be able to test the whole system,
we propose Algorithm 1.



Algorithm 1 Algorithm for testing a system of Things based
on their TDs that support the path vocabulary

1: for TD ∈ System do
2: for path ∈ TD do
3: for uri ∈ path do
4: interactionUnderTest← findInteraction(uri)
5: switch (interactionType)
6: case property:
7: result← testProperty(interactionUnderTest)
8: case action:
9: result← testAction(interactionUnderTest)

10: case event:
11: result← testEvent(interactionUnderTest)
12: end switch
13: store TD.path.uri.result
14: end for
15: end for
16: end for

This algorithm allows us to cover the whole system that has
arbitrary many Thing or inter-Thing sequential behaviors. To
do so, for every TD of the system (including system controllers)
(line 1), it iterates through each path (line 2). In a path, with
the listed URIs (line 3), it finds the interaction from every TD
using the findInteraction function (line 4) and tests the
interaction depending on its type (lines 5-12). In the end, the
test results are stored to allow diagnostics of the system (line
13).

The test scenario in Fig. 9 can be generated by using
Algorithm 1, even if the initiate, rotate and rotation
interactions are in different TDs. Hence, we can automatically
generate test scenarios composed of interactions of different
Things and test the system composed of several Things.

In this case study, we have demonstrated that paths allow
to increase the meaning of test results as well as the quality
of tests and hence contribute to improve the testability of IoT
systems.

V. RELATED WORK

Thing Description (TD) is a new standard which has
resulted from research on Web of Things and Semantic
Web technologies, all trying to address the interoperability
problem in IoT. As discussed in [9], Web of Things has found
application in industry, resulting in its wide adoption and [10]
defined the Thing Description standard by using Semantic Web
technologies.

For composing an interoperable IoT system, there have been
approaches based on marketplaces for IoT devices, such as in
[11], [12]. These marketplaces would offer device descriptions
for other devices to search for and consequently to use the
devices based on their description. For automatically composing
a system, a system controller would look for devices it needs,
referred to as recipes in [11], from the marketplace and compose
the desired system with the devices it finds. However, there is no
description of sequential behavior that can link the capabilities
of Things in a sequential order.

[13] introduces a more generic approach where a goal is set
using the RESTdec format, such as controlling the temperature,
and the system is composed based on this goal. However, the
RESTdec format is not human readable. Also, [11] and [13]
present top-down approaches and the core technology they are
using is not standardized as it is with TDs.

In our approach, however, our first contribution is solving the
ambiguity of sequential behavior in TDs in a human readable

format on device level by adding the path vocabulary. As
a further contribution, we can use it for composing system
behavior in a sequential fashion.

Moreover, the path vocabulary is very similar to formal
property specification. Hence, in the future, it might enable
the application of formal verification methods.

VI. CONCLUSION

In this paper, we introduced a new vocabulary called paths
for the Thing Description standard. Using the path vocabulary,
we have described sequential behavior of Things in TDs
and made it possible to test such behavior automatically,
which was not possible in the current standard. We have
shown that the same vocabulary can be used for describing a
system composed of individual Things without preprogrammed
interfaces. Hence, the methodology to test a single Thing was
generalized to test systems composed of individual Things. In
a case study, we have shown how testing benefits from the
enhanced expressiveness in TDs. Thus, this contribution allows
us for the first time using Thing Descriptions to systematically
compose and test cyber-physical systems.
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[12] A. Bröring, S. Schmid, C. K. Schindhelm, A. Khelil, S. Käbisch,
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